Author's Solution

Given : $\mathrm{AB}=10, \mathrm{BE}=2, \mathrm{DF}=5, \angle \mathrm{DAC}=30^{\circ}, \mathrm{AD} \perp \mathrm{BC}$
To prove : $\mathbf{A F}=2 \mathrm{FC}$

Construction:

Mark the midpoint ' O ' of $A B$. Since $\triangle A D B$ is right Δ, its circumcentre is O and $O A=O B=O D=5$. Now draw the circumcircle of \triangle ADB. Draw DG $\|$ AC so as to cut the circle at G. Join OG \& AG.

Solution :

Now $\angle A D G=\angle D A F=30^{\circ}(\because D G \| A F)$
$\therefore \angle A O G=60^{\circ}$
$\therefore \angle O A G=\angle O G A=\frac{(180-60)}{2}=60^{\circ}$
$\therefore \triangle$ OAG is equilateral
$\therefore A G=5$
$\therefore A G=D F=5$
\therefore AGDF is an isosceles trapezium
All isosceles trapeziums are concyclic.
$\therefore \mathbf{F}$ lies on the circumcircle of $\triangle A D G \& \triangle A D B$.
\therefore ABDF is concyclic and the chords $A B \& F D$ meet at ' E '
$\therefore \mathbf{A E ~ x ~ E B ~}=\mathbf{F E} \times \mathrm{ED}$
ie $12 \times 2=(5+E D) \mathrm{ED}$
Solving we get, $\mathrm{ED}=-8$ or 3
ie $E D=3$
Now for $\triangle \mathrm{AEF}, \mathrm{BDC}$ is a transversal
$\therefore \frac{A B}{B E} \times \frac{E D}{D F} \times \frac{F C}{C A}=1$
$\frac{10}{2} \times \frac{3}{5} \times \frac{F C}{C A}=1$
$\frac{F C}{C A}=\frac{1}{3}$
$\frac{F C}{A F+F C}=\frac{1}{3}$
$\therefore \frac{F C}{A F}=\frac{1}{2}$
ie $\mathrm{AF}=2 \mathrm{FC}$

